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Abstract: Treatment effect estimates are often available from randomized controlled trials as a single average
treatment effect for a certain patient population. Estimates of the conditional average treatment effect (CATE)
are more useful for individualized treatment decision-making, but randomized trials are often too small to
estimate the CATE. Examples in medical literature make use of the relative treatment effect (e.g. an odds ratio)
reported by randomized trials to estimate the CATE using large observational datasets. One approach to
estimating these CATE models is by using the relative treatment effect as an offset, while estimating the
covariate-specific untreated risk. We observe that the odds ratios reported in randomized controlled trials
are not the odds ratios that are needed in offset models because trials often report themarginal odds ratio. We
introduce a constraint or a regularizer to better use marginal odds ratios from randomized controlled trials
and find that under the standard observational causal inference assumptions, this approach provides a
consistent estimate of the CATE. Next, we show that the offset approach is not valid for CATE estimation in
the presence of unobserved confounding. We study if the offset assumption and the marginal constraint lead
to better approximations of the CATE relative to the alternative of using the average treatment effect estimate
from the randomized trial. We empirically show that when the underlying CATE has sufficient variation, the
constraint and offset approaches lead to closer approximations to the CATE.

Keywords: conditional average treatment effect, combining observational data and interventional data, causal
inference, unobserved confounding
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1 Introduction

Weighing potential benefits and harms of treatment requires knowing the treatment effect, which is the
change in probability of an outcome between different treatments. The gold standard for estimating treatment
effects are randomized controlled trials (RCTs). RCTs are designed to provide estimates of the average treat-
ment effect (ATE), which reveals if a treatment has an effect on an outcome. The ATE does not reveal which
patients would benefit from a treatment. Tailoring the effect to a patient requires knowing how treatment
effects change given characteristics of that patient; this is the conditional average treatment effect (CATE). The
CATE is a measure of absolute risk, which patients prefer whenmaking decisions [1]. Estimating CATEs directly
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from RCT data is often infeasible because trials are generally only powered to estimate population average
effects.

Under the standard assumptions like ignorability and positivity, observational data provides an avenue
for estimating CATEs [2]. However, techniques for observational causal inference often do not make use of
knowing the effect provided by an RCT, which are typically reported on a relative scale as an odds ratio or
hazard ratio [3,4]. To make use of population-level relative effects reported by RCT in CATE estimation, several
previous studies on breast cancer and cardiovascular disease used the assumption of a constant relative
treatment effect to develop CATE models from observational data [5–8]. We call this assumption the con-
stant-relative ATE (CR-ATE) assumption and models that use this assumption CR-ATE models.

The assumption of a constant relative treatment effect does not imply that the CATE must be constant
because even with a constant relative treatment effect, the treatment can have a varying effect on an absolute
risk scale depending on the untreated risk of a patient. For instance, assume that a new cholesterol lowering
drug reduces the risk of cardiovascular death within the next 10 years with an odds ratio of 0.5. A 60-year-old
male smoker with hypertension and increased cholesterol has an untreated risk of cardiovascular death of
40% and should expect a reduction in risk of 15% points. A 50-year-old female without hypertension has an
untreated risk of under 1% and will have a less than 0.5% points reduction in risk. Given these widely different
effects on an absolute probability scale, one may recommend the new cholesterol lowering drug to the 60-year-
old male but not the 50-year-old female.

One approach to use the CR-ATE assumption with observational data is to use the constant relative
treatment effect as an offset term in a model. Some models built with an offset term were found to be accurate
in observational validation studies, on the basis of which treatment guidelines acknowledged a place for them
in clinical decision-making [9,10]. Because CR-ATE models target interventional distributions, the use of such
model implicitly assumes that the RCT’s relative effect provides the correct offset and that its use controls for
unobserved confounding. However, whether the assumption is correct has not been discussed or verified.

In this work, we evaluate the validity of the assumption that a known constant odds ratio for treatment allows
for CATE estimation when using the known odds ratio as an offset term. Under the standard requirements for
observational causal inference, we show that there is a mismatch in that the odds ratios reported in RCT are not the
odds ratios that are needed for the offset method because RCT generally report estimates of themarginal odds ratio,
whereas the offset method requires the conditional odds ratio. Further, when there is unobserved confounding, we
demonstrate that even with the correct conditional odds ratio offsets are not sufficient for estimating CATEs.

To address the mismatch in odds ratios, we introduce a new estimator called the marginally constrained
model (MCM). The MCM constrains a model’s implied marginal odds ratio to be close to that reported from an
RCT. We show that with no unobserved confounding, this approach is a consistent estimator of the CATE, and
we empirically show a large reduction in the number of samples needed to estimate the CATE when using this
marginal odds ratio constraint. We also show how this regularizer can be combined with the CR-ATE assump-
tion in constant-relative marginally constrained model (CR-MCM) models.

Next we turn to violations of ignorability, i.e. the assumption of no unobserved confounding. Without
ignorability in offset models, consistent estimation of CATEs is not possible. However, the goal here is to study
if models like the CR-MCM approximate the CATE better than the alternative provided by randomized trials,
the ATE. The measure of better is the precision in heterogeneous treatment effect estimation (PEHE) [11]. For
example, the ATE is a good approximation of the CATE when the underlying CATE has little variation as a
function of the conditioning set. Better approximations to the CATE can lead to patient benefit as the CATE
leads to better individualized treatment decisions. We empirically show in the absence of ignorability that
MCMs almost always lead to better CATE estimation than the average treatment effect-baseline (ATE-baseline)
whenever there is sufficient variation in the underlying CATE. Finally, we demonstrate the utility of the CR-
ATE assumption and show that when the assumption holds, CR-MCMs are even better than MCMs.
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2 Offset models: estimation and non-collapsibility

We consider models for the absolute difference in probability of a binary outcome Y under two possible
treatments ∈T 0, 1{ } conditional on a pre-treatment covariate vector X , using data from the observational
distribution q Y T X, ,( ). The estimation target is the CATE, conditional on X . Without loss of generality, treat-
ment =T 0 is assumed to be the baseline treatment (or no treatment depending on the clinical context) and

=T 1 is the comparator treatment of interest. We denote Yt as the potential outcome of Y if T is set to t by
intervention, andY xt∣ as the analogous potential outcome conditional on =X x . We refer to =Y XPr 10( ∣ ) as the
untreated risk, meaning the probability of experiencing the outcome when assigned no treatment (or the
control treatment), conditional on X . The CATE is defined as follows:

≔ = − =x Y x Y xCATE Pr 1 Pr 11 0( ) ( ∣ ) ( ∣ ) (1)

Taking the expected value over X of the CATE, we obtain the ATE. Working backward from the definition
of the ATE:
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The ATE (equation (2)) is onemeasure of treatment effect based on the marginal potential outcomes Y Y,0 1.
In addition to the ATE expressed in absolute probabilities, a common measure of treatment effect for binary
outcomes employed by RCT is the marginal odds ratio [3,4,12–14]:
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It is often more convenient to work with the log odds ratio. Writing = + − −σ x e1 x 1( ) ( ) as the sigmoid
function (also known as the logistic function) with its inverse −σ 1 (known as the logit function), the log odds
ratio denoted as γ is given as follows:

= = = = − =− −γ γ Y Y Y Y σ Y σ Y, logOR , Pr 1 Pr 1 .1 0 1 0
1

1
1

0( ) ( ) ( ( )) ( ( )) (4)

The log odds ratio γ as a function of potential outcomes Y Y,0 1 is a measure of causal treatment effect.
Throughout we will assume to have access to γ from a RCT conducted in the same population as the observa-
tional study. We assume that this RCT provides an unbiased estimate of the treatment effect measure γ with
infinite precision. However, as is typically the case due to data-sharing restrictions, only γ is available from the
RCT and not the original data. Although RCT can estimate many other parameters of Y Xt∣ such as the condi-
tional odds ratio [15,16], in practice, they often only report a marginal effect. In Section 6, we describe ways to
relax these assumptions.

2.1 Offset models as CATE models

We now study of a class of CR-ATE models that are already used in clinical practice: offset models [5]. Relying
on an assumed functional form of Y XPr t( ∣ ), offset models aim to approximate Y XPr t( ∣ ) in a constrained way by
forcing the “effect” of treatment to be equal to some known, constant, relative treatment effect on an appro-
priate scale. In the context of binary outcomes, one CR-ATE assumption is that the odds ratio for treatment is
constant for all X , whereas the untreated risk =Y XPr 10( ∣ ) varies with X , meaning that:

= = = +−Y x σ σ Y x β tPr 1 Pr 1 .t t

1
0( ∣ ) ( ( ( ∣ )) ) (5)

The assumption in equation (5) is called the offset assumption for logistic models and is an example of a
constant-relative treatment effect assumption. Note that β

t
is a measure of treatment effect derived from the

Conditional average treatment effect estimation with marginally constrained models  3



conditional potential outcomes Y X Y X,0 1∣ ∣ , and the specific offset assumption is that β
t
does not depend on X .

Using this assumption with also assuming β
t
is known yields a class of models of =Y XPr 1t( ∣ ) called

× →g : 0, 1 0, 1�{ } [ ], defined as follows:

= +−g t x σ σ g x β t, ,
t

1

0
( ) ( ( ( )) ) (6)

where = →g g x0, : 0, 1
0

�( ) [ ]. In the context of generalized linear models, a fixed term in a model that is not
estimated from data is called an offset term [17]. We therefore refer to models of the form of equation (6) as
treatment offset models or offset models for short. Later we will study under what conditions offset models lead
to consistent estimators of the CATE.

Offset models and analogous CR-ATE models have been used in practice without any justification [5–8].
Although the parametric assumption in equation (5) may seem strong, one supporting argument is that the
odds ratio was a more stable measure of the treatment effect than the absolute risk difference in a review of
125 meta-analyses of RCT [18]. In addition, RCT rarely find evidence for variation in the odds ratio depending
on covariates (i.e. interaction terms between covariates and treatment on the log-odds scale), though it should
be noted that RCT is generally underpowered for estimating these interaction terms. Either way, the fact that
offset models are used in practice warrants a formal understanding of their consistency and under what
conditions they are likely to provide a better approximation to the CATE than the ATE-baseline.

2.2 Estimation of offset models

To study offset models, we must first describe how they may be estimated. One can construct an estimator for
offset models of the form in equation (6) by specifying a class of functions = ∈ →g : 0, 10 0 0� � �{ [ ]} for the
untreated risk =Y XPr 10( ∣ ). Assume that X is discrete with cardinality d. Coding X as a d-dimensional one-hot
vector leads to a natural parameterization for non-parametric models of =Y XPr 10( ∣ ) with d logistic regression
parameters ∈b d� , giving rise to model family = → = ′ ∈b b bg g x σ x: 0, 1 , ; , d

0 0 0
�� �{ [ ] ( ) ( ) }. This 0�

together with a known β
t
defines a family of offset models:

= × → = ′ + ∈b b bg g t x β σ x β t: 0, 1 0, 1 , , ; , , .
t t

d�� �{ { } [ ] ( ) ( ) } (7)

Parameter vector b may be obtained by maximizing the likelihood of the observed data. The question is under
what conditions this yields a consistent estimator of =Y XPr 1t( ∣ ). If for every ∈ < = = <x Y X x, 0 Pr 1 10� ( ∣ ) ,
there is always a ∈∗b d� such that = = ∗′

bY x σ xPr 10( ∣ ) ( ). With this ∗b , we have that by the offset assumption:

≔ + = = + = =∗ ∗ ∗′ −b bg t x σ x β t σ σ Y x β t Y x, ; Pr 1 Pr 1 .
t t t

1
0( ) ( ) ( ( ( ∣ )) ) ( ∣ )

2.3 Collapsibility

An important concept when considering offset models is collapsibility. A measure μ Y Y,0 1( ) of causal effect is

said to be collapsible over variable X if there exists a set of weights wx such that = ∑∑μ Y Y w μ Y Y x, ,
w x0 1

1

0 1
x

( ) ( ∣ ),
meaning that the marginal effect is a weighted average of the x-conditional effects [19,20]. As shown in
equation (2), the ATE is a collapsible effect measure by weighting the CATEs by the probability of X . For
odds ratios, except for very special circumstances, there are no such weights meaning that the odds ratio is
non-collapsible [21,22].

The non-collapsibility of the odds ratio creates a problem for estimating logistic offset models as the
marginal log odds ratio γ reported in the RCT is not equal to the conditional log odds ratio β

t
required in

equation (6). This means that the model in equation (6) cannot be estimated from the available data. The
stronger the T -conditional association between X and Y , the greater the difference between γ and β

t
[23]. For

an illustration, see Appendix A.1. This mismatch is an important drawback as at the same time, a stronger
association between X andY conditional onT results in more variation in Y XPr 0( ∣ ) and thus more variation in
the CATE under the constant-relative treatment effect assumption. So in the situation where offset models have
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more potential added value (when the CATEs vary substantially), the estimate of the marginal log odds ratio γ

from RCT becomes a less accurate approximation of the conditional odds ratio β
t
needed for estimating the

offset model. If one were to use γ in the place of β
t
in equation (6), this would lead to an inconsistent estimator.

We provide a numerical example in Section 5.2 that highlights this effect of non-collapsibility on offset models.

3 Marginally constrained models

We now turn to a new class of CATE models that also exploits knowledge from prior RCT. There are many
instances where an estimate of γ is available from the published results of an RCT, but not the CATE because
the sample size of the RCT was too small. Running a new, bigger RCT may be infeasible due to costs, or deemed
unethical because of the absence of equipoise, i.e. uncertainty about what treatment is superior if the prior
RCT demonstrated that one treatment was superior over the other on average. When turning to observational
data to estimate the CATEs, instead of ignoring the γ estimate from the RCT, we can use it in the estimation as a
constraint. We describe a procedure for incorporating γ in CATE estimation based on the marginalization of
predicted outcome probabilities. Under some regularity conditions, we prove that this method leads to a
consistent estimator of the CATE when the standard causal inference assumptions hold.

3.1 Exploiting RCT evidence by using the marginal odds ratio as a constraint

Assume we have a function g from a family of functions = × →g : 0, 1 0, 1� �{ { } [ ]} where we interpret
g t x,( ) as a predicted probability = =Y t x g t xPr 1 , ,( ∣ ) ( ). Given a distribution q over X , we can calculate the
marginalized predictions of g : = =Y t g t xPr 1

~
,x q x�( ∣ ) ( )( ) . Correspondingly we have the implied marginal log

odds ratio M g( ) (implied by g and q, but suppressing the dependency on q in the notation) by using the
marginalized predictions of g over q.

= −− −M g σ g X σ g X1, 0, .1 1� �( ) ( ( )) ( ( )) (8)

Given an independent and identically distributed sample of X with sample size n, define the empirical
counterpart of M as follows:
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This empirical marginalizer was used in ref. [22]. Assume g was found by maximizing the log-likelihood of
the observed data over function class � , →L :n �� . We can augment the optimization objective using the
known marginal odds ratio γ from the prior RCT as follows:

= − − >g L g λ M g γ λ, 0.n n n
2� ( ) ( ) ( ( ) ) (10)

We call optimization with the objective a marginally constrained model. If � encompasses all conditional
distributions on ×0, 1 �{ } , i.e. in the non-parametric estimation setting, it follows that ∃ ∗ ∈g � such that

= =∗g t x Y x, Pr 1t( ) ( ∣ ). Assume that additionally the standard observational causal inference assumptions hold,
namely, ⊥⊥Y Y T X,1 0( ) ∣ (strong ignorability), < <q T X0 1( ∣ ) (positivity) and =Y Yt if =T t (consistency). For more
details on these assumptions, see e.g. [24,25]. Theorem 1 states that under these conditions, the augmented objective
10 yields a consistent estimator of =Y XPr 1t( ∣ ).
Theorem (informal) 1. Given binary treatmentT , binary outcome Y and covariate X. Assume strong ignorability

⊥⊥Y Y T X,1 0( ) ∣ , positivity < <q T X0 1( ∣ ) and consistency =Y Yt if =T t . Given a family of functions
= ∈ × →g : 0, 1 0, 1� � �{ { } [ ]} and assuming ∃ ∈ = =∗ ∗g Y x g t x, Pr 1 ,t� ( ∣ ) ( ). Denote the sample log-likeli-

hood →L :n �� . In addition, given marginal log odds ratio = = − =− −γ σ Y σ YPr 1 Pr 11
1

1
0( ( )) ( ( )), sample mar-

ginalizer →M :n �� and >λ 0. Then:

= − − =
∈

g L g λ M g γ is a consistent estimator of Y Xarg max Pr 1 .
n

g
n n t

2

�

[ ( ) ( ( ) ) ] ( ∣ )
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For proving consistency, additional assumptions on convergence and identifiability of the observational
objective are required. The formal theorem statement and proof are provided in the Appendix A.2. Under the
conditions of Theorem 1, both the unconstrained maximum-likelihood estimator and the marginally con-
strained estimator are consistent estimators of the CATE. However, as the MCM optimizes over a smaller
family of functions, we should expect it to be more statistically efficient. We test the relative efficiency of the
MCM versus the unconstrained estimator in Section 5.1.

3.2 Marginally constrained constant-relative treatment effect model estimation

MCM leverages knowledge of the marginal odds ratio γ for CATE estimation, but it does not use the offset-
assumption from equation (5). Offset models do rely on this assumption but often cannot be estimated because
the required conditional odds ratio is not known. We now introduce the CR-MCM, a CATE model that leverages
both the offset assumption and a known marginal odds ratio γ. With discrete X of cardinality d, non-para-
metric modelling of Y XPr t( ∣ ) requires d2 parameters, d parameters for Y XPr 0( ∣ ) and d additional parameters
for Y XPr 1( ∣ ). The offset assumption in equation (5) implies that there exists a ∈∗b d� and β

t
such that

+ = =∗′
bσ x β t Y xPr 1

t t( ) ( ∣ ). To exploit the offset assumption in MCMs and reduce the number of parameters,
we can use the constrained objective in equation (10) and consider optimizing over the offset model family in
equation (7). However, without access to β

t
, the model family is underspecified, and we cannot proceed with

optimization. Instead we introduce CR-MCM as follows:

= − − >
∈ ∈

b b bb L g t x b λ M g t x b γ λ, arg max , ; , , ; , , 0
b

t
b

n t n t
,

2

d
t� �

[ ( ( )) ( ( ( )) ) ] (11)

The model family for CR-MCM has +d 1 parameters and by the offset assumption ∃ ∈ ×∗ ∗
b b, t

d� � ,
= =∗ ∗

bg t x b Y x, ; , Pr 1t t( ) ( ∣ ). Because this model family is a correctly specified generalized linear model, max-
imizing the (unconstrained) likelihood over this family is a consistent estimator of =Y T XPr 1 ,( ∣ ). Given strong
ignorability, positivity and consistency, = = =Y T X Y XPr 1 , Pr 1t( ∣ ) ( ∣ ). Under the regularity conditions of
Theorem 1, we have that equation (11) is a also consistent estimator of Y T XPr ,( ∣ ). Moreover, CR-MCM may
be more efficient than MCM when the offset assumption holds.

4 Offset models and MCMs for CATE approximation under
unobserved confounding

We now turn to the case where the standard assumption of strong ignorability does not hold: in the presence
of unobserved confounding. In the presence of unobserved confounding, meaning thatYt is not independent of
T conditional on X , CATE estimators based on adjustment cannot be used. However, this does not preclude
causal effect estimation as there are known settings where causal effects can be determined despite the
presence of unobserved confounding if one can rely on additional assumptions regarding the data generating
mechanism. Example methods are instrumental variable estimation [26–28] and methods based on proxy-
variables of unmeasured confounders [29,30].

4.1 Offset models under unobserved confounding

We investigate whether the structural assumption made in the offset model in equation (5) combined with
knowledge of the conditional odds ratio β

t
makes the offset model a consistent estimator of the CATE. With a

simple counter example, we prove that this is not the case.

6  Wouter A. C. van Amsterdam and Rajesh Ranganath



4.1.1 Example 1: Offset models are inconsistent estimators in the presence of unobserved confounding

A simple example compatible with the offset assumption in equation (5) is when there is a binary unobserved
confounder U but no covariate X . Denoting � as the Bernoulli distribution and = =q UPr 1

u
( ), then the data-

generating mechanism for this example is:
= =u q t T u y Y u~ , ~ Pr 1 , ~ Pr 1 .

u t� � �( ) ( ( ∣ )) ( ( ∣ )) (12)

Given the offset model family from equation (7), a natural parameterization of =g t x g t,( ) ( ) in the context
of this example is = + ∈g t b σ b β t b; ,

t0 0 0 �( ) ( ) . To disentangle the issue of non-collapsibility from unobserved
confounding, we assume that β

t
is given a priori and is not estimated. We derive a closed form expression for

the expected log-likelihood of the observational data depending on the single parameter b0 of the offset model
L b0( ) in Appendix A.3. By taking the derivative with respect to b0 and plugging in the ground truth value

≔ =−β σ YPr 1
0

1
0( ( )), we find the following expression:

( )∂
∂

= = − = = − = = = = − = =

+ = = − = = = = − = =

L

b
b β q q Y T U Y T U q T U q T U

Y T U Y T U q T U q T U

1 Pr 0, 1 Pr 0, 0 0 1 0 0

Pr 1, 1 Pr 1, 0 1 1 1 0 .

u u
0

0 0
( )[( ( ∣ ) ( ∣ ))( ( ∣ ) ( ∣ ))

( ( ∣ ) ( ∣ ))( ( ∣ ) ( ∣ ))]

In general, this expression is non-zero, meaning that the ground truth solution β
0
is not a stationary point of the

expected log-likelihood. Thereby, the offset method is an inconsistent estimator for =YPr 10( ) in the presence of
unobserved confounding. When either = = =q T U q T U1 0( ∣ ) ( ∣ ) or = = = = =Y U Y UPr 1 1 Pr 1 0t t( ∣ ) ( ∣ ), the deri-
vative is zero at β

0
, meaning that β

0
is a stationary point of the expected log-likelihood. Either of these cases imply

no unobserved confounding.
Despite its simplicity, this example is important for all offset models with discrete X because: (a) when the

treatment is binary, any arbitrary unobserved confounder can be modelled as a single binary variable while
maintaining the same observational and interventional distributions [31]; and (b) given X with cardinality

>d 1, optimizing over the offset model family in equation (7) is equivalent to stratifying the population for
each value of X and optimizing the same objective as in Example 1 in each stratum. Thus, if the offset model is
an inconsistent approximator of =YPr 10( ) in this simple example with no covariate X , optimization over the
offset model family for discrete X will also be inconsistent for Y XPr 0( ∣ ) by implication, even when the correct
conditional log odds ratio β

t
is known. In Appendix A.3, we show that this implies that the offset model is

inconsistent for the CATE as well, aside from very rare chance occasions.

4.2 Metric and ATE baseline

Offset models are not consistent estimators of the CATE in the presence of unobserved confounding and require
knowledge of the conditional odds ratio which is generally not available. However, offset models may still be useful
for treatment decisions if they lead to better CATE approximation than what is used in current clinical practice. As
RCT generally only estimate a single ATE, this is often what current treatment decisions are based on. Ideally,
treatment decisions are based on the difference in probability of the outcome under different treatments condi-
tional on patient characteristics, i.e. the CATE. A direct measure for howwell a model approximates the CATE is the
root-mean-square error of approximated versus actual CATE. In the context of CATE approximation, this metric is
sometimes called the PEHE [11]. The PEHE for function × →g : 0, 1 0, 1�{ } [ ] is defined as follows:

= − −g x g x g xPEHE CATE 1, 0, 2�( ) ( ( ) ( ( ) ( ))) (13)

As RCTs only provide the ATE, in our experiments, we use the PEHE of the ATE as the baseline. If the CATE
is not constant but varies with X , the ATE is a bad approximator of the CATE, leading to suboptimal PEHE and
thus suboptimal treatment decisions. Measuring the approximation error with the PEHE is how we arrive at
what we call the ATE-baseline: the PEHE that is obtained in the current situation by using a single treatment
effect for treatment decisions in all patients, instead of using the CATE. The PEHE of the ATE-baseline is
calculated as follows:
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= −xPEHE ATE CATE ATE .2�( ) [( ( ) ) ] (14)

Given that = xATE CATE�[ ( )], the ATE-baseline has an intuitive form:

= −

= −

= ( )
= ( )

x

x x

PEHE ATE CATE ATE

CATE CATE

VAR CATE

SD CATE .

2

2

�

� �

( ) [( ( ) ) ]

[( ( ) [ ( )]) ] (15)

For CATE approximation models such as the offset model and the MCM and CR-MCM, even if the model is
inconsistent under certain conditions, it may still be a valid modelling choice if it has lower PEHE than the ATE
baseline because it can lead to better treatment decisions compared with current clinical practice.

5 Experiments

We now study the different models for CATE approximation in four experiments. In Appendix A.4, we derive a
closed form solution for the parameters of the offset model in the case of a binary covariate. This closed form
can be used to characterize the bias in offset solutions, though the resulting formula is opaque. Therefore, we
use the closed form for an extensive empirical evaluation. First, we investigate the relative efficiency of the
MCM compared to unconstrained estimation when both are consistent. Then we investigate the PEHE of the
offset model under (a) non-collapsibility but no unobserved confounding and (b) unobserved confounding but
no non-collapsibility. Finally, we compare the PEHE of three different CATE approximators, the offset model
with marginal odds ratio γ, MCM and CR-MCM, and study when these models have better PEHE than the ATE-
baseline in a large experimental grid with a binary covariate and an unobserved confounder U .

Implementation. For implementing MCM and CR-MCM, we optimize the constrained objective 10 by
specifying a small value =λ 0.010 and optimizing the resulting unconstrained objective with a limited-memory
Broyden-Fletcher-Goldfarb-Shanno optimizer. After convergence of the unconstrained optimizer yielding
model estimate ĝ , we evaluate the constraint − < = −M g γ εˆ 102 4( ( ) ) . If this is not satisfied, for the next
iteration =i 1, 2,… , we increase λ such that = ∗ −λ λ10i i 1 and repeat until the constraint is satisfied. We relied
on the JAX [32], JAXOpt [33] and NumPyro [34] python libraries for implementing the experiments. The code to
reproduce all experiments is publicly available at www.github.com/vanamsterdam/binarymcm (DOI: 10.5281/
zenodo.8144896).

5.1 Relative efficiency of the marginally constrained estimator

Under the assumptions of strong ignorability, positivity and consistency and with a known marginal odds ratio γ,
we have at least two consistent estimators of the CATE: the unconstrained maximum-likelihood estimator and the
MCM. To test the relative efficiency of the constrained versus the unconstrained estimator, we define an experi-
mental grid with a binary covariate X and data generating mechanism = = + +−σ Y x β β t β xPr 1t t x

1

0
( ( ∣ )) . The

parameter grid is given in Table 1.
In this setup, a non-parametric model family for =Y XPr 1t( ∣ ) is, given as follows:

= → = + + + ∈g g t x σ b b t b x b tx b b b b: 0, 1 0, 1 , , , , , , .t x tx t x tx
2

0 0 �� { { } [ ] ( ) ( ) }

Given this model family, sample log-likelihood estimator Ln, sample marginalizer Mn and marginal log
odds ratio γ (calculated from the parameters of the data generating mechanism), we compare the constrained
and unconstrained estimator. For each of the possible combinations of parameter values in Table 1, we
generated 250 datasets and applied both estimators. Each fitted model produces an estimate of CATE =X 0( )

and CATE =X 1( ). We construct 95% confidence bounds for these estimated CATEs by taking the 2.5 and 97.5%
percentile values over the 250 repetitions for each simulation setting, sample size, estimator and X . The width
of each confidence bound (len(CI)) is a measure of statistical uncertainty that is relevant for treatment decision-
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making. As expected by the asymptotic theory for asymptotically linear normal estimators, we found empirically
that ( )log len CI( ) was approximately linear in the logarithm of the sample size for each parameter setting and
estimator, see Figures A2 and A3 in the Appendix. We fit models to the experimental results to summarize the
relative efficiency. Specifically, by denoting =m 1 to indicate the unconstrained estimator and =m 0 for the
constrained estimator, we fit linear regression models of the form = + ( ) + +n w w w m εlog log len CIl m0 ( ) to
the experimental results of each parameter combination. We took len(CI) to be the average of the logarithm of
the confidence bound length of CATE =X 1( ) and CATE =X 0( ) in each experiment.

The linear models provided a good fit of the experimental results with an adjusted >R 0.9752 for all of the
combinations of simulation parameters. The parameter wm in this linear model has the following interpreta-
tion: if sample size nc reaches a certain length of the confidence bound with the constrained estimator, to reach
the same length of the confidence bound with the unconstrained method, n ec

wm samples are needed, meaning
a ( )−e100 1wm % increase in the sample size. Across all simulation settings, we find that unconstrained estima-
tion requires at least 71% and at most 106% more samples, meaning that to achieve equal-width confidence
bounds in the CATE estimation, one needs at least 71% more patients with the unconstrained estimator then
when using the constrained estimator MCM.

5.2 The effect of non-collapsibility on the offset method

When the offset method is applied using themarginal log odds ratio γ in the place of conditional log odds ratio β
t
,

the offset model is inconsistent and has non-zero PEHE. We conducted a numerical experiment to evaluate the
PEHE of the offset model compared with the ATE-baseline and CR-MCM with a single binary covariate X with
varying effects on Y . The data-generating mechanism for this experiment is = = + +−σ Y x β β t β xPr 1t t x

1

0
( ( ∣ )) ,

with = = ≤ ≤ =β β β0, 1, 0 log15 2.71
t x0

. Furthermore, = = = =X TPr 1 Pr 1 0.5( ) ( ) .
In Figure 1, we see that when β

x
increases, the PEHE of the offset model with γ as an offset increases as

expected due to the increasing difference between γ and β
t
. However, the PEHE of the ATE-baseline increases

faster. Finally, we note that the CR-MCM remains consistent as by Theorem 1.

5.3 The effect of unobserved confounding on the offset method

When the strong ignorability does not hold, for example due to the presence of an unobserved confounderU ,
Example 1 (Section 4.1.1) demonstrates that the offset model is an inconsistent estimator of =YPr 1t( ), even if
the conditional log odds ratio β

t
is known. As motivated earlier, it may still be justifiable to use the offset

method when it has better PEHE than the ATE-baseline. To study the effect of unobserved confounding on the
PEHE of the offset method, we conducted an experiment with a binary covariate X , binary unobserved
confounder U and in this case a known conditional log odds ratio β

t
. We note that this β

t
is generally not

Table 1: Grid for experiment on relative efficiency of the marginally constrained versus the unconstrained estimator

Parameter Definition Values

q
x =XPr 1( ) 0.5

β
0 = =σ Y XPr 1 0‒1

0( ( ∣ )) σ 0.15, 0.5‒1( )

β
t = =σ Y X σ Y XPr 1 ‒ Pr 1‒1

1
‒1

0( ( ∣ )) ( ( ∣ )) 1

β
x = = = =σ Y X σ Y XPr 1 1 ‒ Pr 1 0t t

‒1 ‒1( ( ∣ )) ( ( ∣ )) log(1/5, 1/2, 1, 2, 5)

q
t =TPr 1( ) 0.5

η
x = = = =σ T X σ T XPr 1 1 ‒ Pr 1 0‒1 ‒1( ( ∣ )) ( ( ∣ )) log(1/5, 1/2, 1, 2, 5)

n Sample size 50, 75, 100, 150, 200, 325, 400, 500, 750
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available from RCTs, but we use it in this experiment to separate out the effect of unobserved confounding
from non-collapsibility. The data-generating mechanism for this experiment is:
• = = = = + + + +−σ Y X x U u α α t α x α tx α uPr 1 ,t t x tx u

1
0( ( ∣ ))

• =U T tPr( ∣ ) such that = = − = = = =− −σ U T σ U T γ αPr 1 1 Pr 1 0
u u

1 1( ( ∣ )) ( ( ∣ )) .

The parameter ranges were = = ∈−α σ α α0.05 , 1, log 1, 2, 3, 4, 5t x0
1( ) ( ), and ∈α log 1, 2, 5u ( ). We set the

marginals = = = = = =U X TPr 1 Pr 1 Pr 1 0.5( ) ( ) ( ) . Parameter αx controls the effect of X on Y and αu deter-
mines the amount of unobserved confounding (both through →U Y and →U T ). Note that if the offset
assumption in equation (5) is used, it is assumed to hold conditional on the observed covariate X , i.e. for
distribution Y XPr t( ∣ ), not for Y X UPr ,t( ∣ ). Therefore, given values for α α α α, , ,t x u0 , and =U T tPr( ∣ ), the para-
meter αtx was determined such that the offset assumption was valid for Y XPr t( ∣ ). To implement CR-MCM, the
marginal log odds ratio for treatment γ was calculated from the experiment parameters.

On this experimental grid, four different models are compared: the ATE-baseline, the offset method with
conditional odds ratio, CR-MCM and a “fully-observational” estimator, i.e. the non-parametric maximum
likelihood estimator of =q Y T X1 ,( ∣ ), where q denotes the observational distribution. The results are presented
in Figure 2. As expected, the PEHE of the fully observational estimator is very sensitive to the increasing
amounts of unobserved confounding. The PEHE of the ATE-baseline increases when the variance of the CATE
increases, which in this experiment is determined by αx . While the PEHE for the offset method increases when
unobserved confounding increases, it still has better PEHE than the ATE-baseline when ≠α 0x . Finally, CR-
MCM is the best performing model overall even though, in contrast with the offset model, does not require
knowledge of the conditional odds ratio β

t
, which is generally not available from RCTs.

5.4 Marginally constrained CATE approximation in the presence of unobserved
confounding and non-collapsibility

Finally, we investigate whether different CATE approximators lead to better PEHE than the ATE-baseline in an
experimental grid covering the space of configurations for a binary covariate X and binary unobserved
confounder U . The parameter grid and values are presented in Tables 2 and 3.

For the parameter αtx , we took one of two approaches depending on “enforce offset”: either one of the
values listed in Table 3 when “enforce offset” = False, or the value that makes the offset assumption satisfied in

=Y XPr 1t( ∣ ) when “enforce offset” = True.

0.000

0.025

0.050

0.075

0.0 0.5 1.0 1.5 2.0

�x

P
E

H
E

model

offset

CR−MCM

ATE

Figure 1: Experiment on the effect of non-collapsibility on the offset model when the marginal log odds ratio γ is used instead of the
conditional log odds ratio β

t
, for varying effects of X onY . When the outcome depends more on covariate x (i.e. bigger β

x
), the difference

between the marginal odds ratio and conditional odds ratio becomes bigger due to non-collapsibility of the odds ratio, leading to worse
CATE approximation error for the offset model. The CR-MCM model uses the marginal odds ratio as a constraint and remains consistent.
CR-MCM: constant-relative marginally constrained model, ATE: average treatment effect.
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To summarize the results, we formulated a criterion based on the variance of the CATE as when the CATE
is constant, the PEHE of the ATE-baseline is 0 and no model can improve on that. The higher the variance of the
CATE, the more CATE models can potentially improve on the ATE-baseline. We group experiments by setting a
threshold τ for the variance of the CATE. To parameterize τ , we turn to the scale of the CATEs, under the
assumption that = =XPr 1 0.5( ) , the simplest version of the experiment. This makes τ a function of only the
CATEs, which makes it more interpretable. To express τ on the CATE scale, we introduce δ as the difference
between the CATEs depending on X :

≔ = − =δ X XCATE 1 CATE 0∣ ( ) ( )∣

Given δ and = =XPr 1 0.5( ) , we can calculate τ as follows:

= ( )
= −
= = = − = = + = =

+ = = − = = + = =
= = − = + = − =
= +
=

τ

x x

X X X X X X

X X X X X X

X X X X

δ δ

δ

VAR CATE

CATE CATE

Pr 0 CATE 0 Pr 0 CATE 0 Pr 1 CATE 1

Pr 1 CATE 1 Pr 0 CATE 0 Pr 1 CATE 1

0.5 0.5CATE 0 0.5CATE 1 0.5 0.5CATE 1 0.5CATE 0

0.5*0.25*

0.25 .

x
2

2

2

2 2

2 2

2

� �[( ( ) [ ( )]) ]

( )( ( ) ( ( ) ( ) ( ) ( )))

( )( ( ) ( ( ) ( ) ( ) ( )))

( ( ) ( )) ( ( ) ( ))

( )

For each τ , we subsetted the experiments for which ( ) > τVAR CATE and we evaluated in what percentage
of experiments the CATE approximators performed better than the ATE-baseline. Furthermore, we split the
results for whether the offset assumption did or did not hold.

�u�=�log�1� �u�=�log�2� �u�=�log�5�

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.00

0.03

0.06

0.09

0.12

�x

P
E

H
E

estimator

offset

ATE

CR−MCM

fully observational

Figure 2: Experiment on the effect of unobserved confounding on the offset estimator when the conditional log odds ratio β
t
is known,

but there is an unobserved confounder, for varying effects of X onY . αx determines the effect of X on the outcomeY and αu determines
the amount of unobserved confounding. When αx obtains bigger, the ATE becomes a bad approximator for the CATE. When unobserved
confounding increases, the fully observational baseline becomes a bad approximator of the CATE as expected. Both the offset model and
the CR-MCM perform well, although the offset model requires knowledge of the conditional odds ratio which is generally not available,
while CR-MCM only requires the marginal odds ratio which is generally reported in RCTs. CR-MCM: constant-relative marginally
constrained model, ATE: average treatment effect.

Table 2: Grid for experiment on PEHE of CATE approximators versus ATE-baseline, definition of parameters

Distribution Parameters

Y XPr t( ∣ ) = = + + + + + + +Y t x u σ α α t α x α u α tx α tu α xu α txuPr 1 , , t x u tx tu xu txu0( ∣ ) ( )

U TPr( ∣ ) = = = = =γ σ U T σ U TPr 1 1 ‒ Pr 1 0
u

‒1 ‒1( ( ∣ )) ( ( ∣ ))

UPr( ) =UPr 1( )

XPr( ) =XPr 1( )

TPr( ) =TPr 1( )
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We took ∈δ 0.01, 0.05{ } corresponding to relatively small differences in CATEs. As shown in Table 4, when
δ increases, for all CATE approximators, the fraction of experiments with improved PEHE compared to the
ATE-baseline increases. The offset model with marginal odds ratio and the CR-MCM improve relative to MCM
when the offset assumption is indeed satisfied. Taking the experiments in which the offset assumption is
satisfied together with those in which it is not, MCM performs best with >91% of experiments having better
PEHE than the ATE-baseline when >δ 0, >97% when >δ 0.01 and >99% when >δ 0.05. Even though the offset
model with marginal odds ratio is the worst performing model in the comparison, it still leads to better PEHE
estimation than the ATE-baseline when >δ 0.05 in >80% of the experiments when the offset assumption does
not hold, and >98% of experiments where the offset assumption does hold. This indicates that the CR-ATE
models in clinical use [5,6] might provide value for individualized treatment decision-making even if they
were developed in data with unobserved confounding.

6 Discussion

We introduced MCMs that make use of a known marginal treatment effect to approximate the CATE from
observational data. Under the standard causal inference assumptions and some regularity conditions, MCMs
are consistent estimators of the CATE, and in our experiments, they are also more efficient than unconstrained
estimation. Next, in the presence of unobserved confounding, we showed that the offset method does not
provide consistent CATE estimates for binary outcomes. We find that MCMs tend to have better PEHE than
offset models, and both models have better PEHE than the ATE-baseline in almost all settings in the case of a
binary covariate, as long as the variance in the CATE is greater than a minimal threshold. Further, when the
constant relative effect assumption holds, CR-MCMs are even better.

Table 3: Grid for experiment on PEHE of CR-MCM versus ATE-baseline, parameter values

Values Parameters

logit 0.025, 0.15, 0.5, 0.85( ) α0

0, 0.402, 0.804, 0.121, 1.161 α α α α α α, , , , ,x u tu xu txu tx

†

0.402, 0.804, 0.121, 1.161 αt

‒1.161, ‒1.207, ‒0.804, ‒0.402, 0, 0.402, 0.804, 1.207, 1.161 γ
u

0.2, 0.5 = = =U X TPr 1 , Pr 1 , Pr 1( ) ( ) ( )

True, False Enforce offset

αtx
† takes these values only when enforce offset = False.

Table 4: PEHE of different CATE approximators for varying values of ≔ = =δ X XCATE 1 ‒CATE 0∣ ( ) ( )∣

δ Offset satisfied Offset CR-MCM MCM N

0.00 False 0.68 0.70 0.96 16,455,472
0.00 True 0.70 0.77 0.69 3,282,598
0.01 False 0.71 0.73 0.98 15,777,278
0.01 True 0.90 0.97 0.89 2,497,022
0.05 False 0.80 0.81 1.00 13,193,906
0.05 True 0.98 0.99 0.98 1,295,294

The experiments were filtered such that > δV AR CATE
1

4

2( ) , which is the variance of the CATE for that value of δ when = =XPr 1 0.5( ) .

The numbers in columns offset, CR-MCM and MCM denote in what percentage of the experiments that model had better PEHE than the
ATE baseline. offset: offset approach with marginal odds ratio used in the place of the conditional odds ratio, CR-MCM: constant-relative
marginally constrained model, MCM: marginally constrained model, N : number of experiments satisfying the VAR(CATE) and “offset
satisfied” requirement.
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An important question for the offset model and the CR-MCM is when it is valid to assume that the relative
treatment effect is indeed constant conditional on the patient features. There is some evidence from meta-
analyses that treatment effect estimates on a relative scale are more stable across different RCTs than treat-
ment effects on an absolute scale [18]. However, in some settings, there may be clear indications for differences
in treatment effect on a relative scale. For instance, breast cancer patients respond better to estrogen receptor
modulator tamoxifen when they have an estrogen-sensitive tumour [35]. When the difference in relative
treatment effect is known, this difference could be accounted for accordingly in MCM and offset models.
The constant odds ratio for treatment remains a strong parametric assumption, though in our experiments
we found that the offset model and CR-MCM tend to have better PEHE than the ATE-baseline even if the offset
assumption does not hold, as long as the variance in the CATE is greater than a minimal threshold.

Instead of only using a single treatment effect estimate from prior RCTs, recent work has studied com-
bining observational data and data from RCTs for CATE estimation [31,36]. Under relatively mild assumptions,
estimates from combined datasets yield more efficient estimates of CATEs than using RCT data alone. However,
these methods require access to the individual patient data from the RCT, whereas MCMs only rely on a single-
effect estimate from RCTs, which is usually available from the published RCT results. Gaining access to
individual patient data from RCTs is often challenging due to data-access restrictions.

We only studied settings with a single binary covariate in our experiments. Future work could experiment
with higher dimensional, mixed-type covariates. In higher dimensions, the constraint on the implied marginal
odds ratio restricts a lower fraction of the degrees of freedom. It is unknown whether the constraint will help
attain better CATE approximation in the presence of unobserved confounding with higher dimensional para-
meter spaces, and the relative efficiency gain of using the constraint may be smaller. Machine learning
methods that learn lower-dimensional representations of covariate distributions that still preserve the infor-
mation relevant for the untreated risk might help restore the efficiency.

Future work could extend our experiments to relative treatment effect estimates for time-to-event out-
comes such as the hazard ratio or to the settings of time-varying treatments and confounding. Furthermore,
we assumed that the RCT gives an unbiased estimate of γ with infinite precision. In practice, RCTs are often
conducted in non-random samples of the population, which may result in different covariate distributions

≠p X q X
rct obs

( ) ( ). If Y XPr t( ∣ ) is transportable from the RCT to the observational data, the marginal odds ratio
from the RCT will be different from the implied marginal odds ratio of Y XPr t( ∣ ) when calculated in the
observational distribution, because Y XPr t( ∣ ) is marginalized over a different distribution of X . However, if
p X

rct
( ) and q X

obs
( ) are known and appropriate sampling weights exist, the constraint on the marginal odds

ratio may be applied using these weights.
Bayesian extensions of MCMs can be investigated to account for uncertainty in marginal odds ratio

estimates from RCTs. Finally, finite-sample characteristics of the estimator for the implied marginal odds
ratio in terms of bias and variance could be studied further.
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Appendix

A.1 Non-collapsibility

Here, we provide an example and intution on what non-collapsibility of the odds ratio is and why the
difference between the conditional odds ratio and the marginal odds ratio increases when the assocation
between x and y becomes greater. Consider the following data-generating mechanism for binary X with

= =q X 1 0.5( ) , binary treatmentT , and outcome mechanism = = +Y x σ b x tPr 1t 0( ∣ ) ( ( ) ), so that the conditional
odds ratio ( ≈e 2.721 ) is constant. As we will see, depending on how b0 depends on x , themarginal log odds ratio
γ

t
will vary. For two settings of b x0( ), we calculate the resultingmarginal odds ratio γ

t
in a few simple steps. The

calculations are visualized in Figure A1. Let = =π x Y xPr 1t t( ) ( ∣ ):

= =
= =
= = +
= = +
= − = + =
= − = + =
=
=
= −

−

−

π σ b x

π σ b x

π σ b x

π σ b x

π q x π q x π

π q x π q x π

η σ π

η σ π

γ η η

0 0

1 1

0 0 1

1 1 1

1 1 0 1 1

1 1 0 1 1

.
t

0 0

0 0

1 0

1 0

0 0 0

1 1 1

0

1
0

1

1
1

1 0

( ) ( ( ))

( ) ( ( ))

( ) ( ( ) )

( ) ( ( ) )

( ( )) ( ) ( ) ( )

( ( )) ( ) ( ) ( )

( )

( )

Figure A1: Illustration of non-collapsibility. For fixed = =p x 1 0.5( ) and =β 1.0
t

, the marginal log odds ratio γ of treatment becomes
closer to 0 when the difference in the untreated risks π π0 , 10 0( ) ( ) becomes larger.
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This leads to the following numerical results in Table A1 where we see that > >β γ 0
t t

and →γ 0
t

when the
difference between π π0 , 10 0( ) ( ) becomes bigger, despite =β 1

t
remaining constant.

A.2 Consistency of marginally constrained models

Here, we prove Theorem 1. First, we state the formal version of the theorem:

Theorem A1. (Formal version) Given binary treatment T , binary outcome Y and covariate X . Assume strong
ignorability ⊥⊥Y Y T X,1 0( ) ∣ , positivity < <q T X0 1( ∣ ) and consistency =Y Yt if =T t . Given a model p y t x,

θ
( ∣ )

indexed by parameter ∈θ Θ, and assuming∃ ∈ = = =∗ ∗θ Y X x p y t xΘ, Pr 1 ,t θ
( ∣ ) ( ∣ ).Denote the sample log-likelihood

→L : Θn � , marginal log odds ratio = = − =− −γ σ Y σ YPr 1 Pr 11
1

1
0( ( )) ( ( )), sample marginalizer →M : Θn � :

∑ ∑⎜ ⎟ ⎜ ⎟=
⎛
⎝

=
⎞
⎠
−

⎛
⎝

=
⎞
⎠

−

=

−

=
M θ σ

n
p Y x σ

n
p Y x

1
1 1,

1
1 0,n

i

n

θ i

i

n

θ i
1

1

1

1

( ) ( ∣ ) ( ∣ ) (A1)

and < < ∞λ0 . Assume that Ln converges uniformly in probability to →L : Θ � and Mn to →M : Θ :�

= = − =− −M θ σ p Y X σ p Y X1 1, 1 0,
θ θ

1 1� �( ) ( ( ∣ )) ( ( ∣ )) (A2)

The uniform convergence in probability means:

− →

− →
∈

∈

L θ L θ

M θ M θ

sup 0

sup 0.

θ

n

p

θ

n

p

Θ

Θ

∣ ( ) ( )∣

∣ ( ) ( )∣

In addition, assume strong identifiability, namely, that for every >ε 0, the Kullback-Leibler (KL) divergence between
the data distribution and model distribution:

>
− ≥∗

∗p y t x p y t xinf KL , , , 0
θ θ θ ε

θ θ
:

( ( ∣ ) ( ∣ ))
∣ ∣

Then:

= − −
∈

θ L θ λ M θ γarg maxn
θ

n n
Θ

2[ ( ) ( ( ) ) ]

is a consistent estimator of ∗θ so the model matches =Y XPr 1t( ∣ ).

To prove this theorem, we first prove that = =Y X Y T XPr 1 Pr ,t( ∣ ) ( ∣ ) (causal identifiability) and then
consistency of the constrained estimator for the observational distribution.

Proof. A standard causal inference result is that under strong ignorability, positivity and (causal) consistency,
= = =Y X Y T XPr 1 Pr 1 ,t( ∣ ) ( ∣ ). Restating the proof:

= = = = =Y X Y X t Y X tPr 1 Pr 1 , Pr 1 , .t t( ∣ ) ( ∣ ) ( ∣ )

Table A1: Numeric illustration of non-collapsibility of the odds-ratio. The marginal odds-ratio γ is closer to zero than the conditional
odds-ratio βt

Setting x (( ))η x
0

(( ))η x
1

β
t

(( ))π x0 (( ))π x1 π0 π1 η
0

η
1

γ
t

a 0 1.5 0.5 1 0.182 0.378 0.402 0.598 0.395 0.395 0.791
1 0.5 1.5 1 0.622 0.818

b 0 3.5 2.5 1 0.029 0.076 0.477 0.523 0.093 0.093 0.186
1 2.5 3.5 1 0.924 0.971
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The first equality follows from the strong ingorability assumption ⊥⊥Y Y T X,0 1( ) ∣ , and the second follows
from the consistency assumption = =Y Y T t,t . The right-hand side now only contains observable quantities.
We now prove that the constrained estimator is a consistent estimator of =Y XPr 1t( ∣ ).

Writing the population objective and its empirical counterpart:

∑

= − −

= − −
=

θ p y x t λ M θ γ

θ
n

p y x t λ M θ γ

log ,

1
log , .

θ i i i

n

i

n

θ i i i n

2

1

2

��

�

( ) ( ∣ ) ( ( ) )

( ) ( ∣ ) ( ( ) )
(A3)

We first introduce a new objective:

∑= − = − − + −∗

=

∗∗ ∗
R θ θ θ

n

p y x t

p y x t
λ M θ γ λ M θ γ

1
log

,

,
.n

θ
n n

i

n

θ i i i

θ i i i

n n

1

2 2� �( ) ( ) ( )
( ∣ )

( ∣ )
( ( ) ) ( ( ) ) (A4)

Because the first term in A4 is constant, it is clear that

= ⇔ =
∈ ∈

∗
θ R θ θ θˆ arg min ˆ arg max .

θ
n

θ

θ
n

Θ Θ

�( ) ( )

The population version of
∗

Rn

θ is:

= − − + −

= − − + −

= + −

∣
∗

∗

∗ ∗

∗

∗

R θ
p y x t

p y x t
λ M θ γ λ M θ γ

p y x t p y x t λ M θ γ λ M θ γ

p y x t p y x t λ M θ γ

log
,

,

KL , ,

KL , , ,

θ
t x y t x

θ

θ

i

t x θ θ

ii

t x θ θ

, ,
2 2

,
2 2

,
2

� �

�

�

( )
( ∣ )

( ∣ )
( ( ) ) ( ( ) )

( ( ∣ )∣∣ ( ∣ )) ( ( ) ) ( ( ) )

( ( ∣ )∣∣ ( ∣ )) ( ( ) )

( )

( )

(A5)

where i( ) is substituting the definition of the KL-divergence, and equality ii( ) holds as = ∗γ M θ( ) by definition.
Lemma A3 gives that uniform convergence in probability of Ln and Mn imply uniform convergence in

probability of n� and thus Rn as Rn is just a constant minus n� . We now use this convergence to prove that

→
∗

R 0n

θ
p

as → ∞n , which will prove the consistency of the constrained estimator. Denote θ̂n as the maximizer of
n� , because of this, it must be that

= − ≤∗∗
R θ θ θˆ ˆ 0.n

θ
n n n n� �( ) ( ) ( )

We can now bound
∗

R θ̂θ
n( ) and show that it converges to 0 in probability:

= − + ≤ − →∗ ∗ ∗ ∗ ∗ ∗
R θ R θ R θ R θ R θ R θˆ ˆ ˆ ˆ ˆ ˆ 0.θ

n
θ

n n

θ
n n

θ
n

i
θ

n n

θ
n

p

( ) ( ) ( ) ( ) ( ) ( )
( ) (A6)

The inequality i( ) holds as ≤R θ̂ 0n

θ( ) and the convergence is given by uniform convergence of Rn. To show that
the KL-divergence goes to zero as well, note that:

= + − →∗
∗R θ p y x t p y x t λ M θ γˆ KL , , ˆ 0.θ

n t x θ θ

A

n

B

p

, ˆ
2

n

n n

     �( ) ( ( ∣ )∣∣ ( ∣ )) ( ( ) ) (A7)

An is non-negative because the KL divergence is non-negative and Bn is non-negative as well. For all n, An is
lower bounded by 0 and upper bounded by Rn, by application of the squeeze theorem adapted for convergence
in probability, → ⇒ →R A0 0n

p

n

p

. For a short proof of how the squeeze theorem for sequences translates to
convergence in probability, see Lemma A4. The assumption of strong identifiability gaurantees that → ∗θ θ as
the KL divergence goes to zero, proving the consistency of the constrained estimator. □
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Lemma A1. Let ∈A θ B θ,n n �( ) ( ) be sequences of real-valued random variables for parameter θ and A θ B θ,( ) ( )

be random variables in � . If both

− →

− →

A θ A θ

B θ B θ

sup 0

sup 0,

θ

n

p

θ

n

p

∣ ( ) ( )∣

∣ ( ) ( )∣
(A8)

then

+ − − →A θ B θ A θ B θsup 0.

θ

n n

p

∣ ( ) ( ) ( ) ( )∣

Proof. Define = −C θ A θ A θn n( ) ( ) ( ) and = −D θ B θ B θn n( ) ( ) ( ). By the definition of convergence in probability,
the goal is to show that

+ > =
→∞

C θ D θ εlim Pr sup 0.
n θ

n n( ∣ ( ) ( )∣ )

Now construct an upper bound on the probability

+ > ≤ + >

≤ + >

≤ > >

≤ > + >

= − > + − >

C θ D θ ε C θ D θ ε

C θ D θ ε

C θ
ε

D θ
ε

C θ
ε

D θ
ε

A θ A θ
ε

B θ B θ
ε

Pr sup Pr sup

Pr sup sup

Pr sup
2

or sup
2

Pr sup
2

Pr sup
2

Pr sup
2

Pr sup
2

.

θ

n n

θ

n n

θ

n C

θ

n D

θ

n C

θ

n D

θ

n

θ

n

θ

n

θ

n

C D

C D

( ∣ ( ) ( )∣ ) ( ∣ ( )∣ ∣ ( )∣ )

( ∣ ( )∣ ∣ ( )∣ )

( ∣ ( )∣ ∣ ( )∣ )

( ∣ ( )∣ ) ( ∣ ( )∣ )

( ∣ ( ) ( )∣ ) ( ∣ ( ) ( )∣ )

(A9)

By the assumption of convergence in probability in equation (A8),

− > + − > =
→∞

A θ A θ
ε

B θ B θ
ε

lim Pr sup
2

Pr sup
2

0.
n θ

n

θ

n( ∣ ( ) ( )∣ ) ( ∣ ( ) ( )∣ )

This limit shows that + >C θ D θ εPr sup
θ n n( ∣ ( ) ( )∣ ) goes to zero via the squeeze theorem because the upper

bound, equation (A9), goes to zero and the lower bound on probabilities are zero, thus showing the desired
convergence in probability. □

Lemma A2. Let ∈M θn �( ) be a sequence of real-valued random variables for parameter ∈θ Θ and ∈M θ γ, �( )

for ∈θ Θ. If − →∈ M θ M θsup 0
θ n

p

Θ
∣ ( ) ( )∣ then − − − →∈ M θ γ M θ γsup 0

θ n

p

Θ

2 2∣( ( ) ) ( ( ) ) ∣ .

Proof. Define = −ξ θ M θ M θn n( ) ( ) ( ), then:

− → ⇒ →
∈ ∈

M θ M θ ξ θsup 0 sup 0.

θ

n

p

θ

n

p

Θ Θ

∣ ( ) ( )∣ ∣ ( )∣ (A10)

We have that

− − − = + − − −
= + + + − − − − +
= + −

M γ M γ M ξ γ M γ

M ξ γ Mξ γξ Mγ M γ Mγ

ξ ξ M γ

2 2 2 2

2 .

n n

n n n

n n

2 2 2 2

2 2 2 2 2

2

( ) ( ) ( ) ( )

( )

(A11)

We need to show that

+ − > =
∈ →∞

ξ θ ξ θ M θ γ εPr sup 2 0

θ

n n
n

Θ

2( ∣ ( ) ( )( ( ) )∣ )
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This expression is the sum of two sequences with ξn. By Lemma A1, our desired result follows if both:

→

− →
∈

∈

ξ θ

ξ θ M θ γ

sup 0

sup 2 0.

θ

n

p

θ

n

p

Θ

2

Θ

∣ ( ) ∣

∣ ( )( ( ) )∣

We can bound the term with ξn using (A10) and the fact that − ∈ ∀ ∈M θ γ θ, Θ�( ) . For ξn
2∣ ∣ to converge

to 0, note that:

> = > = >
∈ ∈ ∈

ξ θ ε ξ θ ξ θ ε ξ θ εPr sup Pr sup Pr sup .

θ

n

θ

n n

θ

n

Θ

2

Θ Θ

( ∣ ( )∣ ) ( [∣ ( )∣∣ ( )∣] ) ( ∣ ( )∣ )

Again, applying (A10) gives the required result. □

Lemma A3. Let ∈L θ M θ,n n �( ) ( ) be sequences of real-valued random variables for ∈θ Θ and ∈L θ M θ γ, , �( ) ( ) ,
and let < < ∞λ0 . Define

= − −
= − −

L λ M γ

L λ M γ .

n n n
2

2

�

�

( )

( )

Then if →L Ln

p

uniformly and →M Mn

p

uniformly, then →n

p

� � uniformly,

Proof. By Lemma A2, we have that

− → ⇒ − − − →
∈

M θ M θ M θ γ M θ γsup 0 sup 0.

θ

n

p

θ

n

p

Θ

2 2∣ ( ) ( )∣ ∣( ( ) ) ( ( ) ) ∣

By uniform convergence in probability, we have that also

− →L θ L θsup 0.

θ

n

p

∣ ( ) ( )∣

This gives us

− = − − − + −

≤ − + − − − →

θ θ L θ λ M θ γ L λ M θ γ

L θ L θ λ M θ γ M θ γ

sup sup

sup sup 0.

θ

n

θ

n n

i

θ

n

θ

n

p

2 2

2 2

� �∣ ( ) ( )∣ ∣ ( ) ( ( ) ) ( ( ) ) ∣

∣ ( ) ( )∣ ∣( ( ) ) ( ( ) ) ∣

i( ) follows from the triangle inequality and the final convergence follows from < < ∞λ0 and the uniform
convergence of the individual terms. □

Lemma A4. If ≤ ≤X Y Zn n n for every n and →X Ln

p

and →Z Ln

p

, then →Y Ln

p

Proof. We want to show that for any >ε 0, we have

− > =
→∞

Y L εlim Pr 0.
n

n(∣ ∣ )

Note that
≤ ≤X Y Zn n n

implies
− ≤ − + −Y L X L Z L ,n n n∣ ∣ ∣ ∣ ∣ ∣

so
− > ≤ − + − >Y L ε X L Z L εPr Pr .n n n(∣ ∣ ) (∣ ∣ ∣ ∣ )

The right-hand side can be made arbitrarily small by convergence of Xn and Zn, proving what we want to
show. □
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A.3 The offset model is not a consistent estimator in the presence of unobserved
confounding

We now prove that optimization over the offset model family in equation (7) and a known conditional odds
ratio β

t
leads to an asymptotically biased estimator of Y xPr t( ∣ ) in the presence of unobserved confounding in a

simple example introduced in the main text (4.1.1). In this example, =Y x YPr Prt t( ∣ ) ( ), or equivalently, there is
no covariate X . This also implies that here CATE = ATE, so we will use the ATE instead. Given the offset model
family from equation (7), a natural parameterization of =g t x g t,( ) ( ) in the context of this example is

= + ∈g t b σ b β t b; ,
t0 0 0 �( ) ( ) . Again, we are assuming that β

t
is given a priori and is not estimated. We first

derive an expression for the expected log-likelihood as a function of b0 under the observational distribution in this
example. Then we show that the ground truth solution β

0
is not a stationary point, proving our claim. Writing

= =
= = ′ = ′ = = ′ = ′ = ′
= = = ′ = ′

′ ′

′ ′

p p u

p p t t u u p t t u u p u u

π p y t t u u

1

,

1 , .

u

t u

t u

( )

( ) ( ∣ ) ( )

( ∣ )

Then the data-generating mechanism is:

′ ′t u p y π, ~ , ~ .
t u tu� �( ) ( )

The ground truth solutions β
0
and β

t
are:

= = − + =
= = − + = +

Y p π p π σ β

Y p π p π σ β β

Pr 1 1

Pr 1 1 .

u u

u u t

0 00 01 0

1 10 11 0

( ) ( ) ( )

( ) ( ) ( )
(A12)

The Bernoulli log-likelihood is

= + + − − +l y t b y σ b β t y σ b β t, log 1 log 1
t t0 0 0( ∣ ) ( ) ( ) ( ( ))

In offset models, β
t
is assumed given a priori and b0 is the only parameter, resulting in the following

expression for L b0( ):

= + − − + + − −
+ + + − − +
+ + + − − +

L b p π σ b π σ b p π σ b π σ b

p π σ b β π σ b β

p π σ b β π σ b β

log 1 log 1 log 1 log 1

log 1 log 1

log 1 log 1 .

t t

t t

0 00 00 0 00 0 01 01 0 01 0

10 10 0 10 0

11 11 0 11 0

( ) [ ( ) ( ) ( ( ))] [ ( ) ( ) ( ( ))]

[ ( ) ( ) ( ( ))]

[ ( ) ( ) ( ( ))]

Taking the derivative with respect to b0, noting that ′ = −σ x σ xlog 1( ( )) ( ), we obtain:

∂
∂

= − − − + − − −

+ − + − − +
+ − + − − +

L

b
p π σ b π σ b p π σ b π σ b
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1 1 .
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[ ( ( )) ( ) ( )] [ ( ( )) ( ) ( )]

[ ( ( )) ( ) ( )]

[ ( ( )) ( ) ( )]

(A13)

We now plug in the ground truth solutions for β β,
t0
(equation (A12)).

∂
∂

= = − − − − − + −
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+ − − − − − + −
+ − − − − − + −

L

b
b β p π p π p π π p π p π

p π p π p π π p π p π

p π p π p π π p π p π

p π p π p π π p π p π

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 .

u u u u

u u u u

u u u u

u u u u

0

0 0 00 00 01 00 00 01 00

01 01 01 00 01 01 00

10 10 11 10 10 11 10

11 11 11 10 11 11 10

( ) [ ( ( ) ) ( )( ( ) )]

[ ( ( ) ) ( )( ( ) )]

[ ( ( ) ) ( )( ( ) )]

[ ( ( ) ) ( )( ( ) )]

Removing terms that cancel out in each line results in
∂
∂

= = − + − −

+ − + − −

L

b
b β p p π π p p π π

p p π π p p π π

1

1 .

u u

u u

0

0 0 00 00 01 01 01 00

10 10 11 11 11 10

( ) [ ( )] [( )( )]

[ ( )] [( )( )]
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Substituting back = = ′ = ′ = ′′ ′p p t t u u p u u
t u

( ∣ ) ( ):
∂
∂

= = = = − −

+ = = − −
+ = = − −
+ = = − −

L

b
b β p t u p p π π

p t u p p π π

p t u p p π π

p t u p p π π

0 0 1

0 1 1

1 0 1

1 1 1 .

u u

u u

u u

u u

0

0 0 00 01

01 00

10 11

11 10

( ) ( ∣ )( )[ ( )]

( ∣ ) [( )( )]

( ∣ )( )[ ( )]

( ∣ ) [( )( )]

Factoring out −p p1
u u
( ) and re-arranging, we arrive at our result:
∂
∂

= = − − = = − = =

+ − = = − = =

L

b
b β p p π π p t u p t u

π π p t u p t u

1 0 1 0 0

1 1 1 0 .

u u
0

0 0 01 00

11 10

( ) ( )[( )( ( ∣ ) ( ∣ ))

( )( ( ∣ ) ( ∣ ))]

If there is no confounding ( =π πt t0 1 or = = =p t u p t u0 1( ∣ ) ( ∣ )), this expression is zero, but in general, it is
not which means that the ground truth solution β

0
is not an optimum of the expected log-likelihood in the

observational data distribution. This proves our claim that the offset model does not recover YPr t( ) in the
presence of confounding. □

Of note, the fact that the offset model does not estimate YPr t( ) does not automatically imply that the ATE is
not correctly estimated as there may be another ′ ≠b β0 0

such that = ′ = =b b b βATE ATE0 0 0 0
( ) ( )̂ . To investigate

this, assume that for some =β a
0

and =β c
t

, we have that:

≔ + − =
+

−
+

+

+δ σ a c σ a
e

e

e

e1 1
.

a c

a c

a

a
( ) ( )

Again, by treating β
t
as fixed, we will now prove that this equation has at most two solutions for =b a0 by

noting that:

+
−

+
=

+ − +
+ +

=
−

+ +

+

+

+ +

+ +
e

e

e

e

e e e e

e e

e e

e e1 1

1 1

1 1

1

1 1

a c

a c

a

a

a c a a c a

a c a

a c

a c a

( ) ( )

( )( )

( )

( )( )

By introducing ≔y ea and cross-multiplying, we obtain:

=
−

+ +
⇔ + + = −

= + + + = −
⇔ + + − + + =

δ
y e

e y y
δ e y y y e

δ δ e y δe y y e

δe y δ e e y δ

1

1 1
1 1 1

1 1

1 1 0.

c

c

c c

c c c

c c c

2

2

( )

( )( )
( )( ) ( )

( ) ( )

( ( ) )

Depending on the values of δ and c, this quadratic equation in y has 0, 1 or 2 real-valued solutions, yielding
0, 1 or 2 real-valued solutions for = =a y blog 0. This implies that there exists utmost one alternative solution
′ ≠b β0 0

such that = ′ = =b b b βATE ATE0 0 0 0
( ) ( )̂ .

In fact, we can explicitly compute this alternative solution by exploiting the symmetry of the sigmoid
function: = − −σ x σ x1( ) ( ). Whenever it is true that:

+ − =σ β β σ β δ.
t0 0

( ) ( )

It must simultaneously be true that, writing ′ ≔ − +β β β
t0 0

( ):

′ + − ′ = − + + − − +
= − − − +
= − − − +
= + − =

σ β β σ β σ β β β σ β β

σ β σ β β

σ β σ β β

σ β β σ β δ

1 1

.

t t t t

t

t

t

0 0 0 0

0 0

0 0

0 0

( ) ( ) ( ( ) ) ( ( ))

( ) ( ( ))

( ( )) ( ( ))

( ) ( )

This means that except in the trivial case when = =β β 0
t0

there always exists a second solution ′β
0
that

has the same ATE δ but a different YPr t( ). We can check whether this coincidentally coincides with the
maximum likelihood solution for b0 in the offset model on the observational data by plugging in
′ ≔ − +β β β

t0 0
( ) in the expression of the gradient of the likelihood (equation (A13)). Again we remove terms

that cancel out and substitute back = = ′ = ′ = ′′ ′p p t t u u p u u
t u

( ∣ ) ( ) to arrive at:
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( )( )∂
∂

= ′ = − = = − = = − + −
L

b
b β p p p t u p t u π π π π1 0 1 0 0

u u
0

0 0 10 11 01 00( ) ( ) ( ∣ ) ( ∣ ) ( ) ( ) (A14)

( )+ − + −p π π π π
u 11 10 01 00( ) ( ) (A15)

+ + −π π2 1.10 11 (A16)

By analyzing this expression line-by-line, we see that the first two lines are non-zero in general when there
is confounding such that = = ≠ = =p t u p t u0 1 0 0( ∣ ) ( ∣ ) and ≠π πt t1 0. The last line is also non-zero in general
as πtu are free parameters. This shows that the offset model is also an asymptotically biased estimator of
the ATE.

A.4 Analytical solution of offset model with binary covariate

Assume a binary treatment t , covariate x and outcome y. Write:

= = = − = =− −β σ Y x σ Y xPr 1 0 Pr 1 0 ,
t

0 1
1

1
0( ( ∣ )) ( ( ∣ )) (A17)

= = = − = =− −β σ Y x σ Y xPr 1 1 Pr 1 1 .
t

1 1
1

1
0( ( ∣ )) ( ( ∣ )) (A18)

The offset assumption states that = =β β β
t t t

0 1 .
Maximizing the likelihood over a model class is equivalent to minimizing the Kullback–Leibler divergence

between the actual distribution and the model distribution. We find an analytical solution for the offset models
by writing the estimation objective as minimizing the Kullback–Leibler divergence between the model dis-
tribution and the observed data distribution with the additional constraints given in A17. Writing:
• p

tx
for estimated probabilities of =Y t xPr 1 ,( ∣ ), such that = − − +p y t x y p yp, 1 1

tx tx
( ∣ ) ( )( )

• q
tx
for actual (observational) probabilities of =Y t xPr 1 ,( ∣ ), such that = − − +q y t x y q yq, 1 1

tx tx
( ∣ ) ( )( )

• = = =q t x T t X x, Pr ,( ) ( ), the observational joint probability of T X, .

The criterion is:

= + − − + − −∣
− − − −L

q y t x

p y t x
λ σ p σ p β λ σ p σ p βlog

,

,
.t x y t x t t, , 0

1

10

1

00 1
1

11

1

01
� �

( ∣ )

( ∣ )
( ( ) ( ) ) ( ( ) ( ) ) (A19)

The partial derivatives for all parameters p p p p λ λ, , , , ,
00 01 10 11 0 1( ) are as follows:

∂
∂

=
∂

∂
− + − −

+ − −

∣
− −

− −

L

p p
q y t x p y t x λ σ p σ p β

λ σ p σ p β

log , log ,

,

t x y t x t

t

00

, ,

00

0
1

10

1

00

1
1

11

1

01

� � [( ( ∣ ) ( ∣ )) ( ( ) ( ) )

( ( ) ( ) )]

(A20)

=
∂

∂
− + − − −

∂
∂∣

−
p

q y t x yp y p λ
p

σ plog , log 1 1 ,t x y t x tx tx, ,

00

0

00

1

00
� � [( ( ∣ ) ( ( )( ))] ( ) (A21)

⎜ ⎟=
⎡
⎣⎢

−
−

−
⎤
⎦⎥
−

⎛
⎝

+
−

⎞
⎠

q q
p

q
p

λ
p p

0, 0 1
1

1

1 1 1

1
,

00

00

00

00

0

00 00

( ) ( ) (A22)

⎜ ⎟=
⎡
⎣⎢

− − −
−

⎤
⎦⎥
−

⎛
⎝

− +
−

⎞
⎠

q
q p q p

p p
λ

p p

p p
0, 0

1 1

1

1

1
,

00 00 00 00

00 00

0

00 00

00 00

( )
( ) ( )

( )

( )

( )
(A23)

⎜ ⎟=
⎡
⎣⎢

−
−

⎤
⎦⎥
−

⎛
⎝ −

⎞
⎠

q
p q

p p
λ

p p
0, 0

1

1

1
,

00 00

00 00

0

00 00

( )
( ) ( )

(A24)
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=
− −
−

q p q λ

p p

0, 0

1
,

00 00 0

00 00

( )( )

( )
(A25)

∂
∂

=
− −
−

L

p

q p q λ

p p

0, 1

1
,

01

01 01 1

01 01

( )( )

( )
(A26)

∂
∂

=
− +
−

L

p

q p q λ

p p

1, 0

1
,

10

10 10 0

10 10

( )( )

( )
(A27)

∂
∂

=
− +
−

L

p

q p q λ

p p

1, 1

1
,

11

11 11 1

11 11

( )( )

( )
(A28)

∂
∂

= − −− −L

λ
σ p σ p β ,

t
0

1

10

1

00
( ) ( ) (A29)

∂
∂

= − −− −L

λ
σ p σ p β .

t
1

1

11

1

01
( ) ( ) (A30)

By setting the gradient to zero to find an extremum of A19 and requiring < <p0 1
tx

, we obtain:
=0

(a) − −q p q λ0, 0
00 00 0( )( ) ,

(b) − −q p q λ0, 1
01 01 1( )( ) ,

(c) − +q p q λ1, 0
10 10 0( )( ) ,

(d) − +q p q λ1, 1
11 11 1( )( ) ,

(e) − −− −σ p σ p β
t

1

10

1

00
( ) ( ) ,

(f) − −− −σ p σ p β
t

1

11

1

01
( ) ( ) .

Combining (a) and (c):
+ = − + − − + =a c q p q q p q λ λ0, 0 1, 0 0

00 00 10 10 0 0( )( ) ( )( ) (A31)

= − + −q p q q p q0 0, 0 1, 0 .
00 00 10 10

( )( ) ( )( ) (A32)

By inserting (e): = +−p σ σ p β
t10

1

00
( ( ) ) we obtain

= − + + −−q p q q σ σ p β q0 0, 0 1, 0
t00 00

1

00 10
( )( ) ( )( ( ( ) ) ) (A33)

By using + =−
− +σ σ x a
e x

e x

1

1 1

a

a( ( ) )
( )

, we obtain:

⎜ ⎟= − +
⎛
⎝ − +

−
⎞
⎠

q p q q
e p

e p
q0 0, 0 1, 0

1 1

β

β00 00

00

00

10

t

t

( )( ) ( )
( )

(A34)

By multiplying both sides with − +e p1 1β

00
t( ) , we end up with a quadratic equation in p

00
. Using some

intermediate variables to shorten the notation and applying the same steps to obtain p
01
, the solution is:

=
= ∕
= − +
= + + −

=
− ± + −

−

τ e

r q x q x

c q y x r q y x

b r τ c τ

p
b b τ c

τ

1, 0,

0, 1,

1 1

4 1

2 1
.

β

x

x x

x x x

x

x x x

0

2

t

( ) ( )

( ( ∣ ) ( ∣ ))

( )

( )

( )

The ± solution is taken to equal sign β
t

( ). Without loss of generality, we assume >β 0
t

. The corresponding
solutions p

x1
are given by = +−p σ σ p β

x x t1

1

0
( ( ) ).
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Figure A2: Results of efficiency experiment (Section 5.1).
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Figure A3: Results of efficiency experiment on a log-scale (Section 5.1).
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